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ABSTRACT

The determinantal equation for a narrow tape helix is derived
of two methods, and complex-valued solutions for the phase constant
are obtained.

The complete k - B diagram (Brillouin diagram) is given as a
function of tape width and pitch angle. In order that the solutions
be continuous functions of k and B, it is necessary to change branches
of the square root which appears in the determinantal equation. A
discussion of solutions which are physically admissible as complex
wave solutions is given, and the phase constants corresponding to the
complex wave solutions are used to represent the current on a helix.
Two source problems are investigated, one an infinite helix, the other

a finite helix. Comparison with experiments is made with good agreement.
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1., TNTRODUCTION

Analysis for the helix was first reportied in 1897 by Pockllngton1 who as=~
sumed a very thin perfecrly conducting wire and formulated an inregral equation
whose approximate solutions predicted an axlal phase velocity equal to the veloec~
ity of light ¢ for very low frequencies and c SJn‘P, where ¥ 1s the pitch angle‘
of the helix, for larger frequencies. These results agree with the results re-
ported in the present work for the limiting cases of very narrow tape and low fre-
quencles,

In 1910 Nicholson2 formulated the helix problem exactly but was forced to
make unreasonable approximations to obtain a solution,

Ollendorf3 1n 1926 reported the solution of the shearh helix for the mode 1in
which no angular variation of the fields exist, Solutions for the higher order
modes of the sheath helix were given by Phillips and Ma11n4a

A more complete analysis which was motivated by the use of the helix in
traveling wave rubes and as antennas was given by Kornhau.ser5 in 1949,

An excellent history and an extensive bibliography through 1955 1s given by
Sensiper6 who also explains the relationship of his the51s7 to the total litera-
ture, In these publications he formulated and solved the determinantal equation
for the tape helix for the phase constant 3. He limited himself 1o the real-~
valued solutions of this equation,

Following Sensiper, Pierce and Tlen8 obtained an approximate solution of the
determinantal equation of the tape helix using Pierce'59 coupled mode theory.

Abstracts of 66 papers and reports on the helical beam antenna through May
1959 are given by Wong and Thomaslo.

None of the works referred to above indicated the possibility of the exis~-
tence of complex-valued solufions of the helix determinantal equation, In fact,

Sensiper and also Pierce voiced doubts as to the existence of complex-valued



phase constants, Sensiper's proof on the non-exisience of complex solutions was
based on the condition of total finite energy.

The exisience of the complex roois and their i1mportance to the helical antenna
problem was first pointed out by Mittralla In that paper he also explained as
a consequence of ithe presence of a particular symme*ry in the helix structure which
makes its effective period to be infinifesimally small, why the determinantal
equation of the helix, unlike the equation for other periodic structures, does
not have periodic solutions, As a further consequence of the above geometry 1t
was shown that there exist no harmonic terms in the representation of the current
along the tape and that a single term of the type elﬁws (s = disrance along the
tape, Bw = phase constant) 1s sufficient fto represent this currenrt,

A major contribution of the present work is the detailed study of the deter-
mination and application of the complex solutions of the helix determinanral
equation, Except for a brief mention by Miftra, a discussion of these solutions
has not been reported elsewhere, The complex valued solutions of the helix
equation have been found very useful in explaining the current distribution
on the helix, both uniform and log-periodic, and for predicting the radiation
pattern of a helical antenna, A further discussion on the interpretation and
usefulness of the complex solutions of the determinantal equaftion in an open
periodic structure appears later,

An alternative approach to the solution for the current distribution on the
helical structure has been reported by Pattonlz, He obtained the Fourier trans-
form of the current distribution on the semi-infinite bifilar helix by a Wiener-
Hopf technique. The Fourier transform of the current was related to the radi-
ation pattern, and the calculated patterns were compared with experimental results
also obtained by Patton, The effect of wire size was studied,

13,14,15

Three related papers have recently been written by MacLean In the

first he compares the different approaches to the helical antenna, The results

PR



of the report state that a "simple engineering approach” (1,e., one without
Bessel Functions) "1s adequate for mos! purposes,”’ The second paper 1S a
theoretical study assuming that waves travel both axially &nd helically along
the antenna, Tt 1s shown that ithe existence of the helical waves 1s responsible
for what are the cut off frequencies of the antenna, Study 1s also made of

the effect of the ground plane, The last 1s an analysis based ou the sheath-
helix mode, He obrains, among other rhings, the determinsntal equation for
the sheath helix with a concentric perfectly conducting core, The resulrs are
given for relative phase velocity when the fields have one axial variarion,

e‘lnq), n=1.

i.e.,
16 L7

Kraus 1n 1948 and later Kornhauser calculated "he radiation pattern of
a helical antenna operation on the axial or beam mode by assuming a sinusoidal
current with an empirically determined phase constant which corresponded to &
slow wave on the antenna. They obtained satisfacrory results by using the em~
pirically determined phase constan' which may now be obtained by using rhe phase
constant determined from the solution ro rthe de’erminantal equation,

The current distribution on a helical antenna was measured by Marsh}8 and
he was able to fit his measured results well by assuming there exisied two waves
on the anfenna, one corresponding to a complex-valued phase constant with rhe
real part representing s wave traveling at the velocity of light and the other
corresponding To a real valued phase constanf representing a slow wave, His
empirically determined phase constants agree well with the complex-valued phase
constants which are solutions 1o the dererminantal equat.ion,

Now return to a brief discussion of complex solutions, The solutions
corresponding to complex-valued phase consfanis are not proper modes siunce the
fields corresponding o these modes do not satisfy rthe radiation condition
everywhere at infinity, However, Marcuv1leg suggested that these solutions

might be used to approximately represenf fthe near fields, and used as an alter=-



nate +to the continuous eigen-value spectrum and as an approximate representation -

of the far fields of 4 structure 1n a certarn range of observarioun points, The

solutions corresponding to the i1mproper modes were given the name leaky modes by i

Marcuvitz who showed that the zero of the dererminantal equarion which corres-

ponds to the leaky mode 1s on the 1mproper Riemann sheet 1n the phase constant

plane, The far fields may also be calculated by Kirchbhoff type 1ntegration -

by treating the near field representsation 1n rerms of the leaky wave fields

as equavalent sources, T
Radiation properties of a clasgs of periodic sTrucrures may be conveniently

analyzed in terms of their Brillouin (k~ B) diagram provided this diagram

exhibits both real and complex solutions 1n slow as well as fast wave regions, -

Early workers on periodic struciures were primdarily inreresrted 1n fhe surface

wave, (real valued solution to the determinantal equarion), on open periodic

struciures, and 1t was cus*oﬁary to name rhe fasr wave regions forbidden regions.

Recently it has been well demonstrated rha' no' only do rhere exist couplex-valued

solutions for the phase constant of some sfrucrure 1n rhe forbidden region where

Br < k but also 1in the slow wave regions where Br > k, Siunce leaky waves have

become synonymous with fast waves, 11 18 suggested here that Lhe name complex

waves be associated with ithe waves corresponding ro complex~valued phase con-

stants i1n fast or slow wave regions or rhat the term leaky wave be generalized

to include both slow and fast waves. The physical internreration of complex

waves was given by MarcuV1tzlg. Olner20 g1ves an excellenf discussion on the

range of permitted observation points and rhe position of the complex wave

zero of the determinantal equation, [In a class of srructures excited by a

given source, where the dominant patt of fhe field has 1ts motal representation

in terms of the continuous spectrum of spatial frequencies, complex waves !F

have been found useful in representing the fields, This alternate repre-



sentation is approximate,

Goldstone and Oliner21~’22

obtained good results using complex waves

in the analysis of a class of leaky-wave structures. The relationship
between complex waves and the radiation pattern of leaky wave anteunnas 18
discussed by Hessele,z3 Oliner also gives other examples of the use of com-
plex waves in electromagnetic phenomena.

To date, very few structures have been analyzed for their complete
Brillouin, (k-B), diagram, other than on an approximate and perturbational
basis. This generalization 1s excepting some 1dealized siructures such as
the constant reactance or modulated reactance surfaces, the anisotropic sheet
structures and a few others, Although the analysis of the above structures
is quite useful, their application to practical devices is good only 1in an
approximate sense,

The tape helix, which is very much a practical structure, yielded to
solution gg; its complete k-B diagram which, with its applications to hela-
cal antennas, is the subject of this report. The determinantal equation for
a narrow tape hélix may be formulated in at teast fwo different ways. One
involves the Floquet expansion of the fields and *the assumed current, with
unknown phase constant, on matching boundary condifions at the cylindrical
surface which contains the tape., The second method is based on an integral
equation formulated for the current distribution on the tape. The second
method is similar to the meihod used by Kogan24 on the round wire version of
the helix, The same determinantal equation is obtained by both methods. The
determinantal equation and its solutions for the phase constant are ex-
tensively studied for real-valued as well as complex-valued phase constants,

The solutions in the k-B plane are continuous. In order that the

solutions be continuous it is necessary to change branches of the square



root in the argument of the IK product in determinantal equation., Different.
branches give rise to different solutions which are physically interpreted,
The root-tracking procedure on different Riemann sheets which 1s outlined
here may find applications in the study of other structures where the locus
in the k-B plane appears to be discontinuous,

The complex-valued solutions to the determinantal equation are used in
the analysis of two different source problems, The first source problem
obtains the sclution for the relative amplitude of the waves corresponding
to real and complex roots for an infinite helix excited at the center, The
second considers the same problem for a finite helix excited at the center.
A variational principle is used to formulate the latter source problem.
Theoretically computed values of the real and complex solutions are used to
explain the experimentally measured current distributions by Marshls. As
previously mentioned, complex wave analysis given 1n this report may be used
to interpret Marsh's results which were empirical.

It is felt that the curreni distribution on the tapered version of the
helix, viz., the equiangular spiral con a cone, may also be explained by ex-

tending the present work to tapered structures,

-

¥
[,



2. THE DETERMINANTAL EQUATION

2.1 Introduction

In this chapter the determinantal equation for the infinite tape
helix will be derived by two methods. The functions of a complex
variable which appear will be multivalued, and determination of the
appropriate branches will be discussed. The geometry of the tape helix
used is shown in Figure 2.1.

The tape lies in a cylindrical surface whose radius is 'a' and whose
axis is the z axis. Perfect conductivity and infinitesimal radial
thinness are assumed; however, the width of the tape is taken as & as
measured in the z direction. Points on the surface of the cylinder are
given by the coordinates ¢ and £. The azimuthal angle, ¢J locates a

point on the center line of the tape as given by the parametric

equations

«
I
©
O]
-
=}

©

where p is the pitch of the helix. The coordinate { is the distance
in the z direction from the point determined on the center line of the
tape by specifying ¢.

The equation of the tape may then be written as



Figure 2.1, The geometry of the tape helix,




2.2 Derivation by Application of Boundary Conditions

The determinantal equation for the tape helix is derived in this
section by expanding the fields and current in space harmon1052
and then matching boundary conditions at r = a.

The helix shows a great amount of symmetry. If one displaces the
infinite helix a distance p in the z direction, the helix transforms
into itself, The translational period is p. If the helix is rotated
through an angle, ¢ = 27, the helix transforms into itself. The
rotational period i1s 2m. These symmetries are not the only symmetries,

In addition, any arbitrary translation Zo followed by a rotation ¢O where

z .
¢O = :2 transforms the helix into itself. Therefore the period in
p
._l -
L =z - po , where ¢l = % , is zero. Now if §{ =z - p ¢l and ¢ is fixed

then & is periodic with period p. If z 1s fixed $ is also periodic with
period p. This property, the generalized period being zero, is a unique
property of the helix. Of course, uniform structures have zero transiational
period. This unique symmetry property of the helix has important
consequences which will be discussed later.

The field equations used are expressed in circularly cylindrical
coordinates. Starting from the source free Maxwell's equation one

obtains the wave equation for EZ and HZ as

2 2 2
1 9 Ty 1 9% 94y 1 99
> Or (r ;) 1‘-'—2" — t 5 - 3 T3 =0 (2.1)
r° 9¢ Oz c© Ot
where ¥ = Ez or Hz and is a function of r, ¢, z and t,

Assuming the time variation as sinusoidal and that Equation (2.1) may
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be separated as

¥ (r, &z, ) = R(x) D z(z)

one obtains

2 " \2
1 d dr n [Bm 2
;'5([‘ a;‘)—[—giﬂ . —ki‘ R =0 (242)
T p
where
3,
— + 1 $=0 (2.3)
de
and
2 2
d”z , [Bm 7 -0 (2.4)
2 P
dz p
2 uzw
A soluticn to Equation(2.3)is
@ = Ale~1n¢ (2.5a)

and, since the fields are periodic in ¢ with period 27, n must be an integer,

A solution of Equation(Z,@ is

Z = A e (2051))
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The solution for Equation(2.2) is

R=A I (T 5) +B K (T 5) (2.5¢)
n n m - n n m -
P P
where
p)
2 -
T = -
m s Bm (k p)

If the fields are to be finite at r = 0 or r = o, then the fields

are of the form

[r o]
$(r,d,2) = z A (2.6)

y N==00 mn K [
ni{im

-
=]
- 3
=}
H
AR 1N k]
@
1
o3
o]
-0

Floquet's Theorem25 states that the fields at z = z + p are related
to the fields at z by a complex constant. If Bm = B + m then Equation(2.6)
may be written

-iB

Y(r,$,2z) = e (2.6a)

TN
M8
>

=
=1
——
-
2
TR
S
D
|
|
=
-
T

Now Equation (2.6a) satisfies Floquet's Theorem since

-iB2m ‘P

Y(r,d,z + p) = e (r,d,2)

When z is changed to z + z, and ¢ changed simultaneouély to ¢ + ¢o where
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zo = B ¢O , the fields must be the same except for a complex constanf,
The property that the fields differ only bv a complex constant after
the above combination of translation and rotarion 1s the resulr of
"The Generalized Floquet Theorem26 ", In "The Generalized Floquet
Theorem' use i1s made of the periodicity not only in the rranslation alone
or in the rotation alone but in the combination of translation, rotation,
and other kinds of reflection symmetries.
The Generalized Floquet Theorem 1s satisfied for the helix whose fields

are described by Equation (2.6a) 1f and only 1f n = -m, Equation (2.6a)

becomes

|

-
ke I )
N

8
—

o]
/‘}

=1
ol iR

T A ) R (% - q>) 2.7)

-
ke AR
~_

Let the logitudinal fields be

-1 §<z A ! I [T T -1 2 L
i 0 E) 00 n n n -I; -
E,) =e z o oLe P (2.8)
n=-00 A K (‘ —)
1 n -
P
1 8, . oy -1 %t
1,0 p 2 B Tl :) p
H’ =-¢e b P e P (2.9)

where i and O refer to r < a and r > a respectively.

By applying Maxwell's equation the other fields are




1)

13

B .
18, -n -2 At [t § pirifr A2y
- 00 - n n n - 1(4)}.1, n n \n B 5
Py | P S e (2.10)
n=~00 /. {2 A OK (T E) _n B °k 1 T 1;)
ny n n n - - n n n -
—| r P p P,
P
B3 -
-1 B z - At e r) Bir [/ L\ -4 RL
= [» o] - n n n “) nuu n n n - -
Pz = P/ e Ple P (2,113
nEeel B a0 M I n rB°k [ %
5 n n n }-) "_— n n n B
P
B 1 T B i r n
-1 =z At tfr = n = B 1 [t Z\] -12¢
= [v 0} lu‘: n n n -~ - n n n ]_) -
L > = vo_ P e P (212
n=-00| n A oK 1 - E) T 2
- nomno\n=y I © + I
P P — T Bn Kn n )]
p p
B i r\ Bn i 1 r n
-1 2z At (’f -—.) i-2 B 1 (’r ~) N4
- © n n n - - n n n - -
P = nw o, _ P P/|e p
2 T (2 13)
n=-® n o r - B‘OK 1 + I
—] r An Kn Tn :) I_) n n n B
p p

The boundary conditions for the tape helix at r = a are:

Tangential electric field is continuous everywhere on the cylinder
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2) Tangential maguetic intensity 1s discontfinuous by the surface

current,

The surface current will be assumed to have the following form

7. = S % cze-dad
P P ¢
J =0 elsewhere 1n 0 < z < p (2.14)

Such an assumption is justified because the fields at ¢ +« ¢l are related
to the fields at ¢ exactly in the manner in which the fields at ¢1 1 ¢l
are related to the fields at ¢l, where &, ¢1 and ¢i are arbitrary, The
reason for the previous statement 1s that 1f the helix 1s infinite then
one cannot distinguish berween the fields at ¢ and ¢1 except by the complex

constant as shown in Equat10n(2.7) Later, in Chapter 5, 1t will be shown

that the solution for an infinite helix fed at the origin wi1ll be of the

-i B, ¢
form e 1 . This current is confined lo the tape and 1s flowing

only in the parallel direction, 1In addition the current has a phase
shift only when ¢ of the center line 1s changed. Thus the current
satisfies Floquet's Theorem. If one 1s to be successful in matching

boundary conditions the current must be expanded in the form of Equation(ﬁ.jﬂ

viz,
LBy - By
- w i
3, =e Pz jllne P (2.15)
n=-0

This form for the current is identical to the form for the fields,




15

Ejuation (2.7), and permits the matching of the boundary conditions.

1f one examines Equation (2.15), Equation (2.14) would be rewritten as
-1 B ~1i % L
J e e P o<t<?d

= (2,16
I (2.16)

TN

0 elsewhere

The current of Equatzion (2.16)15 easily expressed 1n a Fourier series

of the form of Equation(z 15)° The coefficients are found to be

6 -1 :' é 1 ? g
: 21 P P
Jjlin = o f JO e e dé
0
8 85
76 -1 8 — sin —
o 2 2
Jlln = —- e e (2.17a)
n
2p
jén = jlln cos ¥ (2.17b)
jzn = jlln sin J (2.17¢)

Now since all the fields and currents are expanded in similar geries of
linear independent functions, the boundary conditions must apply to each

term of the series or space harmonic. The boundary conditions are



and

E 1 = E
zn zn

E, ' - E
$n T “¢n
i

= H
J¢n zn

16

(2,18a)

{2.189)

(2,18¢)

(2,18d)

If Equations (2.8) through(2.13 are substituted 1nto Equation(2.18) the following

equations are obtained.

=0 (2.19ay

(2.19b)

= jlin cos v
(2.19¢)

IO

po—1 —_— ==

—

d

v Y



) = J1lln sin P

o, 1 nBn/- o a i i a
A K (T u) - — B K (T —) ~A I C’ —)
n n n - Tn - nn n -
P — a1y P P

p
B
n‘--E i a
+ I—J Bn I (Tn -
n N -
FTT— p
:E aiwe
p
i,o

The above four equations can be solved for An

yield

i,o
and B 7’
n

17

(2.19d)

These solutions

a Tna B
K [T =\ — n -2 T
1 " " 5 5 E U U
An = e jlln T cos ¥ - — s1n %
n = P
P
1 T
B =- K (T 2 ~——— jlln cos W
n n n - -
P 1Y
1 [+ &
o i nin -
A°=a P
n T koA )
n|n-
P
I 1 (} a)
o i n n
B =B
R A
n n -
. 1 1 1
where use of the Wronskian, I “(x) K (x) - I (x) K (x) ==, was made.
n n n n X

(2.204)

(2.20Db)

(2.20¢)

(2.20d)
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The component of electric field parallel to the helix may now be

written as

o
Ell = X Elln (2.21)
n=-0
where
= o !’b
Elln Ezn sin ¥ + E¢n cos % (2.22)

If Equations(2.8), (2.10) and(2.20)are substituted into Equation(z.ZZ%Elln

is obtained viz,

B 2
-1 - Z n 2 ana
1l e P e-i z ; sln 2 \P /T
Z ‘ n Z
Elp = — p Jlln {I K ||| Tpa ctnd

L S

P

B a ‘
2o - et ¥ s kfa®r Tk T ootn® (2.23)
P

set equal to

If Equation(2.23)is substituted in Equation(2.21) and E

zero along the center line of the tape, i.e., L= 0, then the determinantal

equation for B is obtained
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-1 E Z 2 /n Bnal :
e s J Sin2 Y © ) Tna 7 2 B
0 == P : z K| |2 +| =Pl ctn® ¥« 2n-2 ctnV
Weap nn - T oa -
n=~00 P n_ P
L 5
B o
n
sSin —
22_ 1 1 2 2p :
+ k72’1 7K “ctn b —-E;s——-n (2.24)
2p
7
Equation (2.24) has been found by Sensiper . . It was reproduced here

using the concept of generalized periodicity. The factor outside the
summation cannot be zero. Therefore both sides of Equation(2.24 may be
divided by ihe non-zero factor. If the following relations among the

Bessel functions

2
-X
= e—— K ] -] - ]
In('x) Kn(x) 4‘n2 Env—l n-1 * [n,-e-l Kn"«l In--lKn-‘.-J. In—:'lKn-]
1 1 1 )
b = - EN | B § + I ]
In G Kn () 4 En~1 anl In~}-1 Kn+l n-1 Kr14.-1 n+l Kn.-;|

are substituted into Equation @249 one obtains

/3 2 2 Ka® 2 .
- B . 2 - . 1
0= T (_ 5 - K ) a1 K - S etn® ¥ (1K In+1Kn+Q D_
n=- P

(2.25)
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where

The argument of each IK product 1in Equations(éB, 24 and 2@ 1s

If

00
a a
- T 2 T Z
Ai z In+1 ( n -> Kn+,1. ( n ~> Dn
n=-0 P P
then Equation(2.25)may be written us
\ k2 I_)2
B~ -~ 2 A _ + A _ - 2A
sin“Y +1 -1 o}
2.2 2 = 2A (2.26)
kP ctn” ¥ o

Equation(2.26)is the determinantal equation for the tape helix derived by
assuming a surface currenf uniform across the tape with phase shift along
the length of the tape. The form of Equation(2.26)is suitable for studying
the behavior of (3 as a function of k.

2.3 Derivation by Transform Techuniques

In this section the integral equation for the electric field on an
infinite helix is derived, The determinantal equation is then obtained

by taking the Fourier transform of the electric field along the helix.
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A current I(¢) is assumed along the center line of the helix and then

the electric field is calculated by fainding first the vector potential

_ m e-1kR
A e 1 = dL (2.27)
and second the electric field
- - grad div A
E = - + e e
W TGl (2.28)

The calculation gives

wh = A A MR 3 1
+ -—4—7—T- 1 aR aR R — E - k—z—R— (ik + 'ﬁ)] dL (2.29)

where ’ER is unit vector pointing toward the observation point from the

source point. The component of electric field parallel to the center

line is given by Ell = E ‘311. On the surface of the cylinder
> 2
~iW ceal 2 1 - 1
B, (§,8) = —2% 16" [acos (-1 + 5 1% (R) ad
11" 2 2,172 1
4m(a +]—3 ) o

2

\ .
2 1 - 1 2
_ f I $h {a sin (991 & p [$-¢ 48] £,(R) d¢'}(2.30)
v o]

R2
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2
RZ = 2a° [1-cos (9-dD1 45 (b= ¢ + )2

-ikR
£ (R) =& [j N S +~£]
1 R k2R RS

e—ikR [:
fz(R) R - 3 (ik +

oo

7

P
j=-}

DU

T
It
o

The expression may be written as

-1kR

2
2. 2 1, =~ e 1
a¢12 k“[a“cos ($-¢)+p ] T 49

E (¢ L) —iw“_ 9172
117 41rkz(azw

sgss

(2.31)

and, integrating by parts twice, the differentiation may be thrown over

to the current as

8
E

. 2roal 2 e
E . (4, §) = miuh, T | i 21(oY) [a%cos (44145 ] agt
11 2, 2 -21/2 512 R
4mk” (a“4p ) 7, ¢
(2.32)

dI
where I and —_ at + @ are zero,
agt

Equation(2.31) is written symbolically as

8

EL 4 D = 10¢Y) 24-9*,0)a¢t (2.33)

1
8




The Fourier Transform may easily be taken since the infegral 1s of the

convolution type., The transform, denoted by ~’, with respect to b

EB,0) = 1(B) Z(z,1)

B is the transform variable and & is to be treated as a parameter.

If the factor R R ) is 1gnored and z = 5 ¢ in the non-periodic
4m(a”+R7)

part, z(¢,£) may be written as

5 2 e—1kR - d2 ~1kR
Z(¢,z,§) = [a%cos ¢+ p ] =-mm 4< >

Note that when a derivative with respect to z 1is taken,¢ 1s a function

of z Now Z(¢$,z,%) 1s periodic in ¢ with period 2m. 1f 2z(¢$,z,0) is

expanded in a Fourier series with z and { as parameters the result 1is

. in$
Z(<¢‘7z)é) = Z Zn(z’é) e
n=-0
where
27

L ~1n¢
z (2,5 = = f z2($,2,8) e~ Tad
0

If z is replaced by 5¢ in Equation (2.36) the resulf is

w0 . ¢
2(9,59,8) = £z (p9,L) &

n=-00

23

(2.34)

(2 35)

(2.36)

(2.37)
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If the Fourier Transform of Zn(5¢,§) with respect to ¢ is %n(B,g) the

transform of Z(¢,B¢,§) is

2 o]
Z B,0) =Z 7 (B+n) (2.38)
n=-00 n
with
0
~ 1 - iB¢
zn(B,é) = 5= fan (p9,8) e Ta¢ (2.39)
-00

If Zn(5¢,§) is replaced by using Equat10n(2.37)one obtains, after an inter-

change in the order of integration,

2 g 1 y
~ 1 -in 1 1 - iB
z (8,8) = () f o in® do fZ(¢,p¢,€)e ¢d¢
n 2m
0 " (2.40)
The integration with respect to ¢ may now be effected by
0 2,1/2
-ik(g 20 )
2Bg 2 2.1/2
f 2 2 7% e” "dg = KO[O(B k™) ] (2.41)
=00
. 27 .
using Campbell and Foster pair 917.
Making the change of variable a = ¢ 4 % in Equation (2.,35) resulcs in
p
2 -lkR 1 82 e-lkR

1
Z($, a) = [a2 cos ¢ +p ] -ﬁ—— + 3y
k g

——f —1

i pe—
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with R2 = 2a2 (1 - cos ¢l) 2 (fla)2

The interesting integral 1n Equaflon(z 40) 18

L

— W
-LKR 1Bta i ’
€l e p da (2.42)

R
-0
which 1s equal to
"B , 2 , L2
e P X 1oB®-p k%) !

kB I V)

where

2
02 = 2 ( ) (1 - cos ¢l)

T

The inner 1integral in Equat10n<2,40) 18

-1B % 2 2
2 - 2,172 2 1 . ;
2. Pk [o(B” - p k) ] [a® cos ¢~ - p2 - B 1 (2 43)
= ° 2
P k
. 28
Now from Erdelya p. 102 No. 35, Ko 1s expanded as
00
Ko(w) = Io(z) Ko(z) 2 2 E_l [n(z) Kn(z) cos nd (2.44)

where

w=a2a (1 - cos ¢)1/2



If

2
— / 2 - /
w=af2 z (1 - cos ¢)1'2(Bz~p k2)1,2

then z is

2
2 =“21/2
(B" - p k%)

CINES

If Equation (2.44) is substituted 1into integral(?.4® and 1ntegrated, the

result for Zn(B,Q) is

-1B %
~ 2 p 2
= - K _+2BI .
Zn(B’g) ae B [In+l n+1 2 nKn4In-lKn-l]
where
1 -2 P
B== (G -
a k
and all arguments are
2
. - 1/
% (82 -p k2) /2
p

. ¢
N 2 ® -i(B+n) =
z2(8,8) == £ e Py K (T s+ 2BT X (TH+I K (T)]
P n==00

where

a 2 -22.1/2

T == [(B+n)” - p k7]
P

26

(2.45)

(2.46)
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Now if the boundary condition on E11(¢1§) is that the average of the
electric field with respect to { be zero for all ¢, then the condition

of %I(B,Q) is

Z B,8) dat =0 (2.47)
_6/2

ol =

The result of Equatlon(2.47> yields the determinantal equation, viz.

2 o0
2a
_ = T ) T ) T :
0="5% E——w [In+lxn4-l )+ = LKL n) MR n)] Dy (2.48)
B =
where
sin (B+n) —
D = ————5—29—
L=
(B+n) -
2p
If
©
A, = L I (T)K _ (T)D
i n+kdr o n’ Tnddi o o0’ on
n=-0

Equation (2.48) may be written as

9 2
o kK. P
B - . 2!11 A + A -2A
- sin % _ 31 -1 [] (2.49)
2 -2 2@ - 2A e
kW p ctn o

Equation (2,42?}, derived by transform techniques, 1s the same as Equat.i.on(2.26)




derived by applying boundary conditions. Pattonl? obtained the
determinantal equation for the round wire version of the helix by using
the transform techniques. The approximations used for the round wire
version were that the current i1s concentrated in a filament at the center
of the wire and that the electric field is zero on a line which is either
the smallest or largest distance from the z axis. The transform
technique had not previously been applied to the tape helix. The
approximations used were that the current is concentrated in a filament
at the center of the tape and that the average of the electric field

over the tape is zero.

2.4 Interpretation of the Determinantal Equation as a Complex-Valued Equation

28

In addition to the real valued solutions for the determinantal
equation found by Sensiper7 'it w1ll be shown in Chapter 4 that there
exist solutions where the phase constant, B, 1s complex-valued 1f the
determinantal equation is interpreted as a complex-valued equation. The
interpretation of the determinantal equation as a complex-valued
equation is now considered,

If there exists a solution for B which is complex-valued, then the
arguments, Tm’ of the InKn products are complex—valued since

2
T = [@m - K213/2

il

The question of which branch of the square root to choose for Tm will be
discussed shortly. Again consider the deteminantal equation, If the

arguments of the IK products are complex-valued, then the IK products are

-

— -4

-
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complex-valued, It is seen that if B 1s complex-valued then 7 1s complex-

valued and then, in turn, the InKn products are complex-valued. Each side
of the determinantal equation, Equation (2,49) 1s complex-valued. It
remains, of course, to show that there exist solutions for B which are
complex-valued, This will be done,

Which branch of the square root for Tm should ke chosen? If T

n

written as

o 1/ 10
T2 HY2 g Mo L
n n n nr ni
where

T

) -1 ni

en = fan e

nr

the question is reduced to choosing the appropriate the branch of the

arc tangent for en, One set of solutions of the determinantal equation
was found choosing the principle value of the arc tangent for each eno

A second set of solutions was found by adding i M to the principle value
of the arc tangent for e»l and choosing the pranciple value of the arc
tangent for en’ n#-1, The + or - sign is chosen to make larg Tmll < .
A third set of solutions was found by adding # T to the principle value

of the arc tangent of both e_l and O _ and choosing the principle value

2
of the arc tangent for en’ n# -1, ~2, The + or -~ sign is chosen to make
|arg T—ll <m, n=-1, -2, For a set of solutions each argument is treated
as a continuous function of k. To understand this continuous treatment
consider

1/2

T =B -D%- a2 +B? 5218 B-1]
~1 r 1 1 r

i e
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with
20 = tan‘l 2 Bi(Brml)
-1 2 -2 2.
B_~1)"-(k +3_.7)
r i
where
161
T - T = kK = B
o= 1T le T, k=xp
and
B=B +218
r i

Suppose the k-B diagram has a solution k = Br sin ¥ with Bi < 0.and small.,

Figure 2.2a and 2b shows the k-B diagram., The salient features of the

2

1 £ T
ocus of -1

as a function of k are shown in Figure 2.3. For k > O

2

is positive since (Br—l)2 >k + B 2

and small the real part of T_ 2 i

1

The imaginary part of 7_12 is also positive since Bi(Br—l) is positive,

With both the real and imaginary parts of 7_12 positive the T 12 as a

function of ; lies in the first quadrant. The locus remains in the first
quadrant until a value of k is reached such that

2

B -D% =k +8,

2

This value of k is approximately k = 1~-Br since Bi is small, As k is

increased the locus enters the second quadrant to remain until

k = sin ¢, i.e. Br = 1

—_1




X

ks1+Br k AXIS

x1

k=Br sINy

;‘
: Bi Axis
I /

Br | Bi

Figure 2,2, A k - B diagram for consideration of T 1

i2 Bi(Br-1)axis
1.2 PLANE
(Br-1 = K% BE, Br <1
Br <1 ‘\R INGRE ASING
Br=1 _
8- k=0 s p
) [(Br-1)- (k +B)] axis
Br>1
(‘Br--l)2 : k% Biz, Br >1

Figure 2,3, The continuous locus in the T 12 plane,
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Now as k is increased the locus of T_lz enters the third quadrant
2

2‘:& :“Blz

since Bi < 0 and Brnl > 0. As k is further increased (Br-l)
and the locus leaves the third quadrant.
Now for k increasing the locus enters the fourth quadrant since
2 -2 2
(Br~1) >k + Bi and Bi< 0. The other argumenis are treated
similarly as continuous functions.

2.5 Summary

The same determinantal equation for the tape helix has been derived

32

by two methods making slightly different assumptions. In the derivation by

matching boundary conditions a uniform current over the entire width of
the tape was assumed. For the derivation by Fourier Transforms a current
was concentrated in a filament in the center line of the helix, and E11
on the tape was averaged to zero.

If the phase constant B is complex-valued then the determanantal
equation is complex-valued. Further, 1f the phase constant 1s complex-

valued one knows how the arguments of the IK products can be treated as

continuous functions. The determinantal equation is unow ready for study.
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3. STUDY OF TWO SIMPLIFIED EQUATIONS

3.1 Introduction

The determinantal equation, Equation (2.26), 1s somewhat complex as
well as being complex valued 1f the phase constant, B, is complex valued,
It will be anstructive to study two simplified equations so that one will
gain an insight 1ntp the behavior of the determinantal equation. This

study will be done in the next two sections,

3.2 The First Simplified Equation

The determinantal equation with k = k 5 may be written as

2 '122 oy B
- T . T . T
° i n 2 . [In+lKn+l( n) N In—lKn—l( n) 2 InKn( n)] Dy
sin 4% n=-00
- (3.1)
_2 2 2]
nn n n
n=—
where
2
- /
T =2 (@em? -k N2
P
and
sin (B+n) —
D = 2p
n —_—
6
(B+n) —
2p

The InKn products all have branch points at the origin. To see this consider
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a small argument approximat10n28 for the hyperbolic Bessel functions,
For |zl << 1
n
z 1

In(Z) ~ (5‘) wr o ngo

I(z) ~1, K (z) ~ - 1n 2

o " —"" "0 ~ 2

n n n-2
e+l oz z 1 .2 i 2
- - ¥ — —_ 3 = (= - 1. — =L
Kn(z) - (2) 1n2 + 3 7 (-1 o[(z) 1, n#0
if
n £0
. 1
lim I (T )K (T ) = = | a constant
n m n m 2n

T30

m
However, the first term 1in the small argument approximation for Kn(,z)
is logarithmic and has branch point at the origin., This branch point
remains, although in the lamait as z—0 the term containing the E 4

logarithmic factor tends to zero. For n = O the 1lam I (T )K (T ) has
o m
Ta_)o
logarithmic character. Consequently, if the argument of IOK0 is small,

that term will make a substantial contribution to the determinantal
equation,
If one inspects T 1

2 1/2

. 2 2 -
T = [Brcl) -(Bi +k )+1281(Brm1)]

a
-1 - -
p

ey
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where B = 2r - 181, 1t 18 seen rthar 1n the region where Br 18 near unity

T 1 w1ll change rapidly. These facrs, rhat Twl changes rapidly when Br

1s near unity and that 1f the argumentr of TOKO will mske a substantial
contribution to the determinantal equation, sugges? that a simplified
equation that would behave like the determinanral equation near Br =1
would be obtained by replacing the sum 1n the numera)'or of Equation (3,1)

by

Inspection of the dencminator of Equation(3.l) shows tha' the denominator
is slowly varying with B, This additional result leads one 1o the

following simplified equation

2
g2 . Lk
: (T LT K (T - T T
c]nzw ]oKo( ~l) 2 2( -1) 2 llxl( -1)
— mrmeer R e - - (3.2)
= 2 A
k ctn“ ¥

where A is a parameter,

The parameter A 15 picked to be about equal to ZAO for the values of
the helix parameter studied.

As the tape is made'more narrow the sum AO 1ncreases,

The solutions for B as a function of k are shown in Figures 3.la
through 3,10b for various values of A, The real and i1maginary parts of
the phase constant are given on individual figures with the real part

w_n

as a function of k on the figures wi'n suffix "a and the imaginary part

as a function of k on the figures with suffix "b",
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The line k = Br sin ¥ is shown on all the k - Br planes., The line
separates the k - Br plane into two regions, one the region above the
line k = Br sin Y where the solutions correspond to fast waves, 1.e,
waves which have a phase constant corresponding to a phase velocitly
greater than velocity of light, and two the region below the line where
the solutions correspond to slow waves, 1.e., waves which have a phase
constant corresponding to a phase velocity less than the velocity of
light. The lines Br =14 k are also shown on the k - Br planes.
Inside the ''v" shaped region formed by the lines Br =1+ k the argument
T—l has non-zero imaginary part. Outside the '"v" shaped region formed
by the lines Br =1+ k the argument. T-l may have zero 1maginary part.

The immediate observation upon examining Figures 3.7a and 3,.7b 1s that
for fixed k there are several values of B, Some of the solutions correspond

to choosing + T as the argument of rhe IK products and orhers to choosing

-1

- T 1 The solutions are unamed mode 1, mode 2 and mode 3 with the

determination of the argument for mode 1 as + Twl and the determination

. Let k be the smallest

of the argument for mode 2 and mode 3 as -~ T ol

-1
value of k such that mode 1 has a solution for B with a ron-zero imaglnary
part,

The mode 1 solution for k < Ecl agrees with the solution shown by
Sensiper7 for the real valued determinantal equation., The mode 2
solution also agrees with the solution found by Sensiper,

The character of the solution is differeunt depending on whether the
parameter A is greater than Acl or less than Acl° Tke mode 1 solution for
k > l-cc

lis typical of the solutions when A > Acl where A01 will be defined

later. The only necessary information now is that A used in Figures 3.7a
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and 3.7b satisfies A > AC Note that real part of the mode 1 solution

1
is not on the k = Br sin ¥ line which represents a solution corresponding

to the velocity of light, As k 1s 1ncreased from ﬁc it 1s seen that B1

1

increases very fast as a function of k. The imaginary part of B for mode
3 1s larger than the corresponding solution for mode 1. A wave with
this attenuation would decay rapidly., Consider the results for A = 1.0

shown in Figures 3.2a and 3.2b.
The solutions with zero imaginary parts, mode 2 and mode 1 with

k < Ecl’ are similar to the corresponding solutions where A = 3.0, This
similarity, however, 1s not found for the solutions with non-zero imaginary
The

parts, The behavior is considerably different than when A > Acl°

fact that there is a considerable difference in behavior of the solutions

. The

for A< A and A > A leads to the obvious definition for A
cl cl cl

value AC is that value of the parameter A in Equatlon(S.Z)that separates

1

the values of A i1nto two sets, one set, A > Acl' such that the solutions
have the character similar to that shown in Figures 3.7a and 3.7b and the

other set, A < Acl’ such that the solutions have the character similar to

that shown in Figures 3.,2a and 3.2b. The outstanding difference in the
behavior for A < Acl and A >-ACl may be observed by inspecting the imaginary

part of the phase constant corresponding to mode 1. If A > Acl then

Bi >0 for all k > Ecl° If A<A then there exist regions where there

cl

1 The value A = Acl corresponds to

exists no mode 1 solution for k > Ec
a value 2A0 which, 1n turn, corresponds to a tape width 8 that is larger
than tape widths consistenr with the narrow tape approximation. Therefore,

no solutions of the determinantal equation in the region‘Br near unity will

correspond to the solutions given in Figures 3.2a and 3.2b. They are given
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to assist in the understanding of this kind of equation, The strangest
property of the solutions in Figures 3.2a and 3.2b is that in order to
have a continuous solution, B as a function of i, 1t 18 necessary to
change branches of the argument at k = .273 and k = .358, These
values of k correspond to values of Bi = 0.

The argument for the mode 1 solution corresponding to k = .372 is

im/2

pe where p is real. The argument for the mode 2 solution corresponding
to k = .273+ is pel(‘rr/2 - ﬂ). The arguments are discontinuous by the
amount 7 but the value of the right hand side of Equation(é,z)ls the sane

for both arguments. The reason for this equality is not at first obvious,

Now
Io(lp)Ko(lp)+12(1p)K2(1p)—211(1p)K1(ip)
is the complex conjugate of
Io(-lp)Ko(-lp)+12(~1p)Kz(—lp)~211(~1p)Kl(~1p)

for p real. In addition, the sum of the imaginary parts is zero for

the value k = .273. This may be seen easily from the fact that for

k = .273, B, = 0, and therefore, the left hand side of Fquation(3.2)has

zero imaginary part. The right hand side also has zero imaginary part.

The right hand sides for k = .273- and .273+ are complex conjugates and have
zero imaginary parts, and therefore the right hand sides are equal. A
similar situation occurs for k = .358. Figures 3.6a and 3,6b show the

results for a value of A near A01, A = 1.5,




Note that the difference 1n behavior of the solution for A = 1,0 and
A=1.,5, Both A = 1,0 and A = 1.5 are less than ACl si1nce there exists
a region of k >‘EC1 where no solution tor mode 1 exists., The real parts
of the mode 1 solution are connecred by a continuous solution of the
other determination of the square root compared to the mode 1 solution
for A = 1.5, However, for A = 1,0 the real parts of rhe mode 1 solution
are not connected by a conrinuous solution, If Figures 3.2a through 3.6b
are studied, 1t 1s seen that the change from connecting rhe real parts of
the mode 1 solution by a continuous solutidn r> no* counecring rhe real
parts takes place in a continuous manner, There 1s no question of
discontinuity of the arguments since all the soilurions have The same
determination for the square roots. 1t 15 re1terated thar this
particular behavior will not be found 1n rhe detrerminantal equation
since A < ACl corresponds to tapes which are roo wide for the narrow
tape approximation.

Figure 3,la and 3.1b show the results for A = .9 and 1t 1s observed
that the behavior of the solutions as a function of A 1s 1n a continuous
manner,

Consider some of the general properties of rhe solutions for A > ACI

(Inspect Figures 3.7a through 3.10b) Note rthat icl‘ the lowest value of k

for which mode 1 has a non-zero 1maginary part, becomes greater as A is

increased., Also for k > Rc the real part of B follows more closely to the

1

K = Br sin ¥ line and follows for & greater range of k values, For the
imaginary part the local maximum near k = ,2 and The local minimum near

k = .25 decrease as A 1ncreases., The values of B1 for .4 < k < .5

increase as A 1ncreases, For mode 2, the i1maginary part 1increases as A
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Figure 3.1la. The k - B_ diagram for simplified equation one;

A=.9, ¥'= 12.6°.
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diagram for simplified equation one;
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The k - B_ diagram for simplified equation one;

Figure 3.2a. r
A=1.0, % =12.6.
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The k - B_ diagram for simplified equation one;

Figure 3.2b. 1 5
A = 100’ lli iz 12.6
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Figure 3.3a. The k - B diagram for simplified equatign one
expanded near k = .25; A = 1.0, Y =12.6 .
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Figure 3.3b. The k - B, diagram for simplified equatign one
expanded near k = .25; A = 1.0, ¥ = 12.6 ,
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The k - B diagram for simplified equation one
expanded fear k = .25, A = 1,05, ¥ = 12.6°.

Figure 3.4b.

The k - Bi diagram for simplified‘equatiog one
expanded near k = ,25; A = 1,05, ¥ = 12.6
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.25
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$ AV’ | { 1 | I |
0 .86 .90 94 .98 102 .06 Al

Figure 3.5a, The k - B diagram for simplified equation
- . o
one expanded near k = .25; A = 1.1; Vo= 12.6 .

.28
—— MODE 3,

.27

x|

.26 T .| o——0—0-

-T., 0——0——0

x [2.6°

25 \d

A=l
24
.23}
<ﬁEi 1 L 1 | i I ]

0 .02 .04 .06 08 10 12 14 16

Figure 3.5b., The k ~ B, diagram_for simplified equation o
one expanéed near k = .25; A = 1.1, ¥ = 12.6
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Figure 3.6a. The k - Br dlagramofor simpl:fied equation one,
A=1.5, % = 12.6 ,
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Figure 3,6b. The k - B, diagram for simplified equation one,
i o
A=1,5, Y = 12.6 .
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Figure 3.7a. The k - Br diagramofor simplified equation one;
A=20, Y=12.6.
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Figure 3.7b, The k - B diagramofor simplified equation one;
A=2.0, = 12.6 .,
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Figure 3.8a. The k - B_ diagram for simplified equation one;
I’,.L‘ (e}
A=3.0, ¥ =12.6.
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Figure 3.8b. The k - Bi diagram for simplified equation one;
A=3.0, ¥=12.6.




Figure 3.9a,

The k ~ B_ diagram for simplified equation one;

A=5.0,

W= 12.6°.
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Figure 3,9h.
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04

Bi

The k ~ B, diagram _for simplified equation one;

A=25.0,

= 12.6°.
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Figure 3.10a, The k - Br diagram gor simplified equation one;
A=25.0, ¥=12.6.
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Figure 3.10b, The k -~ Bi diagram gor simplified equatioun one;
A =250, % =12.6.




increases,

One could study this simplified equation in more detail, e.g., as a
function of pitch angle ¥, This kind of study will be delayed until the
complete determinantal equation is studied. At that time the physical
significance of the increasing or decreasing of solutions will be

discussed.

50

The reason for studying the simplified equation was to show the exist-

ence of the various modal solutions of the determinantal equation and
show how the arguments of the IK products could be treated so that the
solutions would be continuous functions of k.

3.3 The Second Simplified Equation

It will be instructive to study another simplified equation. This
equation will approximate the behavior of the determinantal equation in

the region Br near 2. Since for Br ~2,

2

2 -2 2 1/2
T, =16 2% - (k4854218 (B -2)]

ctn ¥

changes rapidly, only those terms in the numerator of the determinantal
equation, Equation 3.1), will be used for the simplified equation. Also

as stated in the last section, the denominator, 2Ao’ 1s a slowly varying

3

function of k and B. Again 2A0 is replaced by a constant, A. Simplified

equation two is

2
2. E__
T T - (T
sin? y LK T ¥ LK (T ) -2 LK )
2 B A -

k ctn? ¥

(3.3)
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The solutions are shown i1n the following figures,
The line k = Br sin¥ 1s shown on the k - Br planes, The lines
W ue

Br =2 % k are shown ou the k - Br planes, Inside the v shaped

o

region formed by the lines Br =2 4+ k the argument has non-zero

imaginary part. Outside the "v'" shaped region formed by the lines
Br =2 + K the argument T-z may have zero 1mag1nar§ part,

If one examines Figures 3.11 and 3,12 the i1mmediate observation is
that for a given k there exists more than one solution for B, The different
modes do not all have the same determination of the squate root for
agrument of the I[K products., Modes 2 and 5 have the positive deter-
mination for the argument of the TK products, whereas modes 4 and 6 have
the negative determination,

Let kcz be the lowest value of k such that The solution for mode
2 wi1ll have a non-zero 1maginary part, The mode 2 solution for
B < 2-k and k < Ecz 1s samilar to the solurion found by Sens1pex"7
The mode 4 solution also corresponds to Sensiper's results, The mode 2
solution for k >'RC2 has an imaginary part which is similar to the mode
one solution to the simplified equaiion of the previous section.

Consider the results shown in Figure 3,16 which 1s an expanded view
of a section of Figure 3.1la, Note that to have the resl part of the

phase constant continuous across the line BT = 2~k, for k < ﬁc it 1s

27
necessary to change the determination of the square root. This difference
in the determination of the arguments causes a discontinuity 1n the
arguments by the amount ®m. However the value of the right hand side

of Equation 8.3 1s the same for either determination of the T

argument at Br = 2-k. This equality 15 true because when Br = 2-k



and Bi =0, T-2 = 0 and further

Lin I (T ) K(T )=z, ng O
T_z—ao
which is independent of which branch was chosen.

The results shown in Figure 3.18 which is an expanded view of a
section of Figure 3.1la are to be studied, Again the same type of
discontinuity occurs., The line Br = 2 + k separates modes 4 and 5 which
have a continuous real part, The argument has a discontinuity equal to 7
for modes 4 and 5 at Br = 2 + k., The right hand side of Equation 3.3
is the same for either determination of the argument, The reason for this
equality is similar to that given above,

In Figure 3.2la the bghavior of the solutions for modes 2 and 5 shoul
be observed, This behavior is typical for values of the parameter A less
than Acz’ where Acz will be definéd later, In Figure 3.19 the behavior
of the solutions for modes 2 and 5 for A = 10.should be studied. Note
the behavior of the solutions is different for A = 10.0 than for A = 7.0,
This behavior for A = 10.0 is typical for values of the parameter A > Acz'

The number AC is now easily defined, The number AC divides the set A

2 2

into two classes, one where the mode 2 solutions corresponding

, A<A
C

2)
to these values of A are not continuous with the solutions for mode 4

and the other, A > A

c2’ where the mode 2 solutions corresponding to

these values of A are continuous with the solutions for mode 4.
If one examines Figures 3.22a, 3.22b, 3.23a, 3.23b,.3,24a, and 3.24b

it is seen how these solutions take on the different character as the

52
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Figure 3.1la. The k - B_ diagram f or simplified equation two;
A=1,0, ¥ =10,

Figure 3.11b. The k - B, diagrgm for simplified equation two;
A= 1,0, "¢ =10,
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Figure 3.12a. The k - B diagrgm for simplified equation two;

A=5.0, ¥=10,
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Figure 3.12b, The k - B, diagrgm for simplified equation two;

A=5.0, = 10 ,
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¥ = 10°

A=10.0

Figure 3.13a. The k - Br d1agrag for simplified equatrion two;
A= 10,0, ¥ = 10

MODE 5§

Bi

Figure 3.13b., The k - Bi dJagrag for simplified equation two;
A - 10.0, ¥ = 107,
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Figure 3,14a. The k - Br diagram for simplified equation two;
A=25,0,¥%=10,
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Figure 3,14b, The k - Brdiagramcfor simplified equation two;
A=250, ¥=10",
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Figure 3.15a. The k - B_ diagram for simplified equation two;
r le;
A=1.0, ¥=12.6".
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Figure 3.15b, The k - Bi diagramofor simplified equation two;
A=1.0, ¥=12.6,
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Figure 3.20a, The k - B_ diagram for simplified equation two near 1104;

A=86.0, "¥=10°
K
% i | |
) © 04 08 i2 18
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1
Figure 3.20b. The k - B, diagram for simplified equation two near kc4

A=86.0"¥=10°
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Figure 3.2la, The k - B dlagrag for simplified equation two near Ec

;
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1
Figure 3,21b, The k - B diagram for simplified equation two near kc4;

A=7,0,"¥=10
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1
Figure 3.22a, The k - B_ diagram for simplified equation two near k _;
r o c4
A=17.25, ¥=10".
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1
Figure 3.22b, The k - B diagrag for simplified equation two near k

A=17.25,"¥=10". cd
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The k - B_ diagram for simplified equation two near kc4;

Figure 3,23a, r
A=7.5 "¥=10,
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Figure 3.23b., The k -~ B, diagram for simplified equation two near k &
Ar:7.5_,“¢==10- ¢
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Figure 3.24a, The k - B_ diagram for simplified equation two near k ;
by o c4
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Figure 3.24b. The k - B, diagrgm for simplified equation two near k

A =8.0, Y¥=10° cd’
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Figure 3.25a. The k - B dlagram for simplified equation two near k 4;
A=10.0,"y =10
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Figure 3.25b. The k - Bi diagrag for simplified equation two near k 4
A =10.0," ¥ = 10°, ¢
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value of A is increased through the value Acz. There is no question of
discontinuity in the argument here since all arguments are of the same
determination. Note that the character of the solutions changes in a
continuous manner as a function of the parameter A. This type of
behavior, as well as the behavior exhibited a1 the Br =2 + k lanes,

will be seen in the determinantal equation,

3.4 ISummapl

Two equations which are relatively sample compared to the determinantal
equation and which, furthermore, exhibited some of the character of the
determinantal equation were studied in this chapter. It was shown how
discontinuities in the argument of IK product could result in solutions

which would be continuous, If the discontinuities of the arguments are

not introduced there is no continuation of the solutions, Further it

was seen that the solutions for modes 2 and 4 changed character as a
function of the parameter A.

The parameter A was chosen to be approximately equal to 2AO. As the
tape width 8 is made more narrow AO increases, Consequently, the larger
values of the parameter A correspond to the narrower tape widths,

Solutions for B which are complex valued have been found for both
simplified equations. The use of complex roots will be discussed later.

The behav;or of the solution of simplified equation one, Equation (3.2),
for A = 1.0 is reminiscent of Pierce's coupled mode theory for the helix
as discussed by Watkins25 . However, as was pointed out in the discussion

of equation one, the values of the parameter A < Ac correspond to tapes

1

which are not narrow, i.e. too wide for the determinantal equation to be

valid, The fact that the solutions for A > A which correspond to

cl’




narrow tapes, do not exhibit the character needed for Pierce's coupled
mode theory inhibits the use of Pierce's simple theory.

Simplified equations one and two, Equation (3.2) and (3.3), are
related to the determinantal equation for tﬁe sheath helix for sheath
helix modes ~1 and -2 respectively. The complex-valued solutions for
the sheath helix and a discussion of their relation to the solutions

29
for the tape helix are given by Klock and Mittra .

With the background obtained from studying the solutions of the

two simplified equations one 1s now ready for the determinantal equation,

69
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4. SOLUTION OF THE DETERMINANTAL EQUATION

4,1 Introduction

The determinantal equation

2
2 . _Kk
' A _-2A
siny A+1+ 172 o
= (4.1)
~ . 2A
k ctn® ¥ ©
0
A= L I (T)K (1) D
J ey D +)
2 1/2
T=l@sw?-k] 2
P
in (B+n) °
sin (B+n) —= _ _
D = — 22 f_yp

n 5
(B+n) =

derived in Chapter 2 which is a complex-valued equation if B is complex-
valued, was solved with the aid of a digital computer.

The determinantal equation can be written such that the complex-valued
phase constant, B, is a function only of the parameters, normalized tape
width, pitch angle, and normalized frequency, Symbolically, this is
written as B(5,¢, R). The tape width is normalized with respect to the

6
radius, i.e, 6 - PG The ratio % is replaced by 1ts equal, ctn ¢, so that

1Y
Equation (4.1) reads
~2
BZ_ k
sina¢ _ A+1+A~-1—2Ao (4.2)
2, - 2A_ e
k ctn” ¥

SRS I G-, 3 r w0 v




o]
A =L T (TH K (T D
) g I i
g 2172
T = [(B+n)” - k ] ctn ¥

n

)
sin [ (B+n) 3 ctn ¥]

D =
n (B+1n) _5_ ctn ¥
2
)
Define a = 3 ctn ¥
= ka

! ] ¥ = k th
The normalized frequency 1s k Py where 1s e free space wave

number. By normalizing with respect to the radius one 1s able to

reduce the study of the determinantal equation to the solution for the
complex valued phase constant as a function of only normalized tape width,
normalized frequency and pitch angle,

All of the coefficients 1n Equation (4.2) are real, Therefore, if
B = Br+iBi 18 a solution, then B = Br~181 1s a solution, If the solution
for the phase constant i1s 8 = B_-1B_, then the ¢ dependent fields are

._13r¢ _Bl¢ T
of the form e e .

The real part of the phase constant, Br’ is a measure of the phase
delay as the wave travels in the +¢ direction and has units of radians
per radian, The imaginary part of the phase constant, Bi’ is a measure
of the attenuation as the wave travels in the +¢ direction and has units
of nepers per radian,

The line k = Br sin ¥ is shown on all the curves for Bi. This line

separates the k _‘Br diagram into two regions:
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1) Points above the line represeni waves which are traveling down
the tape with a phase velocity grsater tnan ithe velocity of light
i.e. fast waves and

2) Points below the line represent wives which are rtraveling down
the tape with a phase velocity less than the velocity of light,

i.e., slow waves.

The lines Br =1+ k and 8 = 2 + k are shown, Between the lines

r

Br =1+ k and between the lines Br =2+ k the arguments T—l and T 9
2

respectively have non-zero real parts, Recall Tn = [(B+n)2-ﬁ 11/2

LB IE

4,2 Solutions

4.2.1 The k — B diagram' ¥ = 10°, & = L035

Figures 4.1la, b, ¢, d and e 1s the k - B diagram for pitch angle 10O

2
and ® = ,035. The immediate observation 1s that for a value of k there
exist more than one solution for B, The various solutions or modes each
correspond to a different determination of a square root argument for
the IK products,

The determination of the square roots was discussed in Section 2.4,

and T All

Note that mode 1 has positive determination for both T 1 2"
the other modes have the negative determination for T-l’ Modes 2,3,
and 5 have the positive determination and modes 4 and 6 have the

negative determination for T_2

In the regions Br ~ 1 and Br ~ 2 the solution behaves similarly to
the solution of the simplified equations studied in Sections 4.2 and 4.3
respectively.

The constants Ecl and icz are defined as in Section 4.2 and 4,3

respectively,
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The solutions for mode 1, k < Ec mode 2. k < Ecz; and mode 4,

1!

k < EC4; correspond and agree with the results obtained by Sensiper,
All other solutions have non~zero 1magilnary parts,

308

)

4.2.2 Mode 1 Solution. ¥ = 12,6°, a = 10

.0001, .1, .4,

v

The solutions for mode 1 as a funcrion of ® are shown 1n Figures 4,2a
and b. As the tape 1s made more narrow the real part of the phase constant
tends toward the k = Br sin ¥ line as would be predicted for an infinit€ simally
narrow tape or filament, The maximum value of the 1maginary part of the
phase constant increases as the tape 1s made wider, The imaginary part
of the phase constant i1ncreases rapidly as k 1s 1ncreased from Ec1° The
behavior of the solution changes quite fas? for a swall change i1n normalized

frequency,

Expanded views for a range of k near kcl are shown 1n Figures 4,35

and b, As the tape 15 made more narrow, kcl 1ncreases with &cl approaching

sin ¥

- as O tends toward zero.
1+sin Y]

4,2,3 Mode 1 Solution. O = .035, various pitch angles

The solutions for mode 1 for various pitch angles for fixed tape widrth,
g = ,035, are shown in Figures 4.4a and b, As the pitch angle 1s increased
the Br locus deviates less from the k = Br sin¥ line, This result seems
reasonable physically since as the pitch angle 1s increased a section qf
unit length of the helix is becoming more nearly a siraight wire, Also
note that as pitch angle 1s 1ncreased the imaginary part of the phase
constant decreases,

4.2.4 Mode 3 Solution: ¥ = 12.6°, a = 107°% o001, .1, .4

Figures 4.6a and b shows the mode 3 solutions as a function of tape

width, Note that the imaginary part of the phase constant 1s now to a
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different scale since Bl is larger than 1t is for any other mode.

4.2.5 Modes 2 and 6. ¥ = 12.6, @ = 10°°8 0001, .1, .4

2

The solution for modes 2 and 6 are shown in Figures 4.7a and b, Figures

4.8a and b show an expanded view for a range of k values near Ecz' The

behavior for mode 2 above Ecz 18 similar to the behavior for mode 1 above

Ecl' In contrast to mode 1 behavior, the behavior of the solution with

zero imaginary part does not approach the line B = 2 - k asymptoiically
but terminates at the line. To find a continuous soluticn, the determination
of T~2 must be changed., This type of behavior was exhibited by simplified

equation two, Equation (3.3),

-308

L

4.2.6 Modes 4 and 5: ¥ =10° @ = ,10 0001, .4, ¥ = 12,6° « =.1

2

Modes 4 and 5 exhibit behavior as shown in Figures 4,9a and b, The
solution for mode 4 terminates on the line Br = 2+k., To have a continuous
solution the determination of T_z must be changed as 1n simplified
equation two, Equation (3.3.1). Figures 4.10a and b give the results for
modes 4 and 5 for different parameters, The solution exhibits ithe same
character as for the previous parameters,

4.2.7 Modes 2,4, and 5: ¥ = 10°, Br ~ 2.4, ¢ = 1079 1071 10717

- -29
10720 10727

In Figure 4,1la through Figure 4.15b are shown the-éhange of
character of the solution that modes 2, 4, and 5 exhibit as the tape width
is changed. If the tape 1s made sufficiently narrow, mode 2 terminates
on the line B = 2 + k and connects in a coniinuous manner to mode 4. This
is exactly the same behavior as was shown by simpllfied equation two,

Equation(é.@.
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Br 1
Figure 4.11la. The k - Br dlagrgm for the Bape helix near k ca Mode 2,
4and5; Y=10° ¢=10"
43 —
A2 —
e
b\
X 4
.40
39
<>
0 1 | | 1 | 1 1
0 .02 .04 .06 .08_ 10 A2 A4 16
Bi 1
Figure 4,11b, The k - B, diagram for the 6ape helix near k Modes 2,

c4’

4and 5; W =10°, a =101,
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x|

N 1 1 | |
2.36 2.40 2.44 2.48
Br 1

Figure 4.12a. The k - B diagram for the Eape helix near k ,: Modes 2
T, o -1 c4 ’
4 and 5: ¥ =10, @ =10 7,

0 .02 .04 .06 Lo T |- 14 .16

.08
Bi

. 1
Figure 4,12b, The k - B, diagrgm for thglgape helix near k 4 Modes 2,
4 and 5: ¥ =10°, g =10 ", ¢
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Figure 4.13a.
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Br 1
The k ~ B dlagrag for the igpe helix near k cd’ Modes 2,

4

’

and 5;" ¥ =10, a =10 ~,

43

42 E—

o,
- \\0\
k 41 —
40 +—
.39
2
0 l [ | | L | |
0 .02 .04 .06 .08 .10 A2 14 .16
1
Figure 4.,13b, The k - B1 diagrag for fﬁe tape helix near k o4’ Modes 2,
4, and 5;" ¥ = 10°, ¢ = 10719,
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Figure 4.14a. The k - B dlagrgm for the tape helix near k Modes 2,
4, and 5;°¥ = 10°, @ = 10720,
43 |- Y =10°
42 L——
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o Mode 5,
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.39 | o
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Figure 4.14b, The k - B, diagram for the tape helix near k ca’ Modes 2,

4, and 5,V = 10°, ¢ = 10-20,




*’m&wwa "

102

|
248

1
2.44
1

0 J\/ﬁ |
o] 2.36 2.40
Br -
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Figure 4,15a, r a
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The k ~ B, diagram for the gape helix near k
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4 and 5; ¥ =10,
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4,2.8 Solution when the Tape Width 1s Infiunitesimally Narrow,

Mittra'll showed that as the tape width is made infinitesimally
narrow the asymptotic solution for the determinantal equation, Equation

(2.40) is given by

K
and
B =14 k

A graph of the above solution is shown i1n Figure 4,16,

To show that the solution given in Equation @.3) 1s the asymptotic

solution consider the determainantal equation,

2
- A +A -2A
g2 _ _K S N Y (4.4)
2 ¥ 2A -
sin o
Recall i
0
A= L I K (T)D
J N=—00 +J N+ ]

For an infinitesimally narrow tape Dn =1, Now for n # 0

1
2
[ (n+3) +T

(T~

I K _(
n+j n+joon

2
N

2.1/2
] /

S

as was shown by Sensiper7 . IET 0, the numerator of the right hand
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side of Equation (4.4) is finite. As T—l approaches zero the numerator of

the right hand side becomes finite because the IOKO(T_l) term has a
logarithmic singularity (see Section 3.2). The denominator of the right
hand side of Equation (4.4) for |n|>>1 behaves like the harmonic series
and consequently the denominator of the right hand side is finite. The
value of the right hand side of the determinantal equation, Equation (4.4)3

is zero if T 1 # 0 and indeterminant if T 17 0. The determinantal equation

then has the asymptotic solution

and also has the solution

5 -308

The solution obtained when = 10 , a very narrow tape, agrees with

the asymptotic solution. As the tape is made wider, but still very narrow

—

-30

e.g. corresponding to 6 10 , the solution for the phase constant

]

becomes complex for k > and the real part of the phase constant

cl

2 B

deviates from the B = sin ¢ line which is the asymptetic- solution.

T sin
For any tape corresponding to real dimensions, even very narrow tapes, the
solution deviates from the asymptotic solution.

4,3 Choosing the Predominant Modes,

In this section it will be shown that modes 1, 2 and 4 are permitted
by the interpretation of leaky mode theory, whereas modes 3, 5 and 6 are

not physically admissable,
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If only the r and z variation is considered, the fields outside vhe

helix for r large may be written as

B . T
-1 = Z -7 =
- ) n a )
Y (r,z) =e p = a e (4.5)
n=-00

because Ime(x) behaves like e ~ for large x. Now af B = BrwlBlp the z

dependence is

which corresponds to a wave traveling in rhe +z direction and decaying
in the +z direction., For large r the fields are given by Equation (4,5).
The only terms which could causge the fields r: nehave :mproperly are

T or

the terms corresponding ton = -1, ~2 and -3. The argumen=™ T’l, 2

T-B’ which could cause the mode %> behave 1mproperly 1s shown for each
mode in Figure 4.17 along with the r dependence for the fieid., In the
r dependence shown in Figure 4.17 the res!l members 3 and b are positive.

. ) . - . -ar -ibr
Consider the mode 1 solution. For Br < 1 the r depsndence is e 2
which corresponds to an outwardly traveling wave which 1s attenuated,
Since Br < 1 the radiation corresponding to the phase constant 1s in the
backward direction, and decay in the rransverse direction is proper faqr

. 18 i
the leaky wave as was shown by Marcuvitz and later discussed by
20 ar =ibr

Oliner . For Br > 1 the r dependence 1isg e*Te 1br which corresponds
to an outwardly traveling wave which is growing in amplitude. Since

Br > 1 the radiation corresponding to the phase constant is in the

forward direction, and exponential growth in the transverse dircction is

—l O
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T-1 PLANE T.; PLANE
T
e-ore-ibr T eore-ibr
Br<i MODE | Br >1
(a) (b)
T2 PLANE T.p PLANE
T2
—aro-ib or o-ib
e Ore 1or T-z e e tor
Bre2 MODE 2 Br>2
(c) (d)

Figure 4.17a. Determination of 7 1 for Modes 1 and 2.
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T-1 PLANE T-3 PLANE
1-3
' eibr eor e—ibr
T [Br<3
MODE 3 MODE 4
(e) (f)
T-2 PLANE ’ T-2 PLANE
e—areibr ‘ eoreibr
T-2 T2
MODE 5 ‘ MODE 6
(g) “ (h)

Figure 4,17b, Determination of T—l for Modes 3, 4, 5 and 6.
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proper for the leaky wave as was shown by Marcuvitz. To understand the
growth in the transverse direction consiaer a slotted waveguide shown
schematically in Figure 4,18. The guide is fed at the origin, and radiation
takes place in the forward direction. As z is increased less radiation
occurs since the fields are decaying exponentially. The spacing of the
lines in Figure 4.18 is inversely proportional to the power density.
Note that at z = z' the fields increase as x is increased from zero to a
value of x related to the direction of radiation,

The mode 2 solution has exactly the same behavior for Twz as the mode

1 solution has for T_ and consequently mode 2 has solutions which

1)
correspond to waves which are leaky waves, The mode 4 solution corresponds

to waves which are leaky waves since the mode 4 solution behaves for T

-3

the same as mode 1 and mode 2 solutions behave for Twl and T respectively.

2
However, this behavior of the fields 1s not the case for solutions

corresponding to modes 3, 5, and 6. Each mode has a transverse behavior

which 1s charactérized by an inwardly traveling wave, If there 1s an

inwardly traveling wave the field must increase in the z direction. The

fields do not increase since the z dependence is

N

[]

=
vdH

N

This contradiction between the wave traveling inwardly and the fields
decaying in the +z direction make the waves corresponding to the

solutions of modes 3, 5, and 6 physically inadmissable for leaky waves,

2
If B = Br+iBi is chosen as the solution to the determinantal

equation, all of the arguments are the conjugates of the arguments when
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B = Br~131 is chosen as the solution to the determinanfal equation,
The property that Tn 15 1178 conjugate when B is 1ts conjugate makes the
discussion of admissable solutions when B = BralBl similar to the above
discussion when B = Brmlﬁl and with the same results,
1) Modes 1, 2, and 4 are physically admissable for leaky modes and
2) Modes 2, 5 and 6 are not physically admissable for leaky modes.
If -B 1s chosen as the solution to the determinantal equarion, then

T and T _, Here,

attention must be focused on the terms containing T_lg .9 +3

as before, the discussion of the admissable solution 1s similar to that

daiscussion above and with, or course, the 1dentical results, The normalized
1
frequency, k, for which there 1s experimental data 1s less than k od where Rt

is the lowest value of k for which there exisis a solution corresponding
1
to mode 4, Therefore, only two modes will be of 1interest for k < k ca

°

The modes of inferest are modes 1 and 2 and will be called predominant
modes.
4.4 Summary

The results of the solution of the determinanral equation have been

presented 1n this chapter. It was seen that only modes 1, 2 and 4 are
1
physically admissable, Mode 4 exists only for k >k 4 Therefore, for
1
kE <k c4 the current will be approximated by solutions from modes 1 and

2.

4
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5. SOURCE PROBLEMS

5.1 Introduction

In contrast with the previous chapters that considered only an infinite
tape helix without a source, thas chapter 1s concerned with helices with
a source, The source will be of small extent located at the origin, A

description for the source is

E ! <«
( L
E =/ (5.1)
11 ’
0 1o ¢
where ¢o is much less than one radian, In the limit Ell could be
taken as
- 6 N “
E. () (5.2)

Not only will the infinite helix be studied but also a finite helix
symmetrical about the oraigin.

5.2 An Infinite Helix with a Source

In this section an infanite helix with a source as described in
Equation (5.1) is considered. An equatioun for the amplitudes of the
free modes is found following Sensiper7. . In a range of frequencies
of interest there are two modes. The solution for the relative amplitudes
is shown graphically.

To derive the expression for the ampliiudes one first writes the
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assumed electric field Equation (5,1) as a Fourier 1ntegral viz,

2 e
E 2 -1B8% .
= = e imm d
Ell 7 f 3 e B8 (5.3)
--00
B¢
since Y sin . 1s the Fourier transform of The assumed electric
field. The current on the tape 1s
00
() = II(B) 189 4 (5.4)
-00

Now Ell may be calculated from the 1integral representation i1n Equation (2,32)

_ 82 1 . \kxhikR
E_(,b) = — M ~LED) ety Talcos (¢ ¢ 452 P Em—adt
1 s o g b2 9ol2 R
41k~ (a”+DP7) ~00

If the two equations for E Equation (5.3) and Equation (2.32) are set

11’
equal to each other and the current and 1fts derivative are replaced 1n

BEquation (2.32) by their Fourier 1ntegrals one obtains, after an interchange

of order of integration, an expression containing I(B) viz,

Bd
0 (o] [6.¢]
E "' 73T -iBo 1(B) 2 2, 2 1. =2 | -ige!
0 =f dB {= ————f— e 31 1 -B%+k " [a"cos (-9 ) 1p 1le
T B 212 ‘
=00 4mut (d 1p ) -0

e_ikR 1
d¢ (5.5)
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If the integrand is set equal to zero an expression for I(B) is

obtained, Now if the inverse iransform of I(B) 1s taken the result is

B T
_;E sin -52 -1B¢ 2 m2‘1/2
18 T —g5 - ° 4T W€ (a"+ p )
1($) = = ds (5.6)
ol 2 -ikR
-0 e-18¢ -Bz+k2[azcos(¢-¢l)+f) ] e . dq)l
[ o}

The denominator of the integrand of Equation (5.6) is recognized as being

proportional to Ell for a current I = Ioe ~13¢1. The electric field Ell for

the exponential current is given by substituting for I and gil” 1n Equation

dé
(2.32) viz,
© -
‘ 2 1 -ikR
-iwy 2 2 2 1 - -1B¢" e 1
= - 3 —  d
Ell ; 2_2 172 f B +k"[a“cos(¢-97) + p lre = ¢
41mk" (a"+p ) =00
(5.7)
Now the electric field may also be found from Equation (2,23)
-iB - 2
E = ie 2p Iove -iB® siny oA 82 _ k o iz ctn2¢ A_1+A+172A0
1 - 4T k € P o ‘ ' 2A,
sin
(5.8)

which was the electric field found in the derivation of the determinantal
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equation by matching boundary conditions,
If Equations (5.7) and (5.8) are set equal to each other, one may
substitute for the denominator of the 1ntegrand of Equation (5.6) the

series expression, whose zeros have been found, 7The expression for I($)

1s
B 5
1E¢ 2 S1t =2 1B A
o k*®p 2p -1B¢
(P = . I — e
T 2 B
vsin Y Yo .0
2 5 dB
T 2 2A
k - 3
i - B - s T
° s1nY J
(5.9)
Let
2
= 2 A A _-2A
] T - +
DB) =24 | B% - —%— _ % ctn® L ¥l _ 0 (5.10)
sin % [o}
The expression D(B) when set equal to zero 1s the determinantal
equation. The roots of the determinantal equation are poles of the
integrand in Equation (5.9). The integral in Equation (5.9) may be
evaluated by using the residue theorem to find the current in terms of
the free modes. The result is
4‘"E¢O§ € B e‘lB]¢
I($) = ———o— L g (5.11)

v sin® ¢ 1=1,2 ag D(B)
B=B
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where use was made of the fact,

@
2
P

for narrow tapes with a source of small extent. The summation in
Equation (5.11) is taken over the two predominant modes.
Let the current on the tape be

—iBl $ —i32 P
1($) = Io[e +ae ] >0 (5.12)

A calculation for the magnitude of a, lal, was made for a helix with

)
o}

Y = 12.6 and & = .15. The results are shown in Figure 5.1. Note that

as the frequency k is increased the relative amplitude of the second

mode is increased.

The complex valued derivatives in Equation (5.11) were evaluated

numerically by taking first an increment in the Br direction and finding

A.Dr ADi
E* +1 ZE_ (5»13)
r r

where D = Dr + Di' Second an increment in the iBi direction was taken

and the result
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T 1T

T

&= .15

‘ INFINITE HELIX
Ol

.00 L l | l l | |
16 18 20 22 24 26 28 30

k —»
Figure 5.1, Relafive Amplitude of the Two Modes on an Infinite
Heiix as a Function of Frequency.
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E

(5.14)

8.
5.5

compared to Equation (5.14) to determine the derivative. This is, of
course, doing nothing more than performing the difference quotient along
two convenient rays. The function D(B) is analytic in a region containing
the zero under consideration, and the derivative is unique. The only
reason that the difference quotient was evaluated along two different

rays was to have a numerical check on the calculation.

5.3 A Finite Helix with Source

P
5.3.1 Introduction

This section will be concerned with relative amplitudes of the
two predominant current modes that exist on a finite helix, The helix
is symmetrical about the origin - ¢OS $ < ¢0 and is fed at the origin,
The two currents, Il( Bl) and 12(32), will be chosen such that each
current will be zero at the ends of the helix, ¢ = + ¢0. This boundary
condition excludes considerafion of mode conversion at ¢ = + ¢0 i.e.,
no energy is taken from mode 1 and placed in mode 2 or conversely
by the end discontinuity.

The currents that satisfy the boundary condition are

I, = sinhy, (¢ - 1)) (5.15)

and

12 = sin Bz(¢o' []) (5.16)
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where Yl and Bz are the propagation and phase constants for modes one and
two respectively, which were found by solving the determinantal equation
for an infinite helix with the same pitch angle, tape width and radius as

the finite helix. The total current on the helix is

I =1 4 AI (5.17)

where A is a complex constant which relates the relative amplitude of the
two modes.

If one had a function of the total current which was stationary with
respect to the current then it would be possible to find the complex
constant A by a variational technique. This is how A is calculafed, The
relative amplitude of the two modes 1s then studied as a function of
frequency for a finite helix of different lengths.

5.3.2 The Variational Expression

A variational expression that is stationary with respect to current
: 30
for a symmetric helix was found by Tang
The integral representation, Equation (2.31), for the electric field

was found in Chapter 2. Equation (2.31) will be repeated here for

convenience, viz,

00

2 2 -1KkR

~ —iwy 10 )87 202 e gly =T e 1

Ell = . ERVE .’. 1(97) 8¢12 + k“[a“cos($-9 ) +p | R dé
4mk“(a“+p ) —00

(5.18)
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with

12 5 2 1
R? = [2a sin 2] 4 (pe-6h12 v )

The above R is linearized so that the kernel in Equation (5.18) is symmetric

in ¢ - ¢l, i.e. K(¢ - o'y = K($" - $), with 1

52 2| -ik
+ kz[azcos(¢-¢l)+p ] e

1, _ —iwp 9
K(¢-¢) = 2 1/2 84}2 R, Ty

aTk2 (243 )

The approximation for the linearized R is good for large R since 6
is compared to 5(¢»¢l) and is good for very small R since 4 B(¢-¢l) is
compared with 5.

If Equation (5.18) is written symbolically as E = K I

and if

where the helix extends from -¢O +o ¢%, then the stationary function
is the input  impedance

<I,KI
z. = SLEI2 (5.19)

in 12(0)

found by Tangao,

The stationary function, Equation (5.19), is stationary with

respect to current, i.e.,
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&z
—z 20 (5.20)
6 1
It follows from Equations (5.17) and (5.20) that
6z
A g (5.21)
5 A
If the indicated operation in Equation (5.21) is performed, the result
for the complex constant A is
1@ - 1,0 J
A 2 11 1 12 (5.22)
LO L, - 1,0 &5
where
JZ o fo 1 1 1
iy = j I (H IJ(¢’ ) K(¢-¢) dbde (5 23)
b %
I,(0) = simh yl¢o
and
12(0) = sin Bz¢o

To evaluate the complex constant A it

in Equation (5.23).

is necessary to evaluate the integrals
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5.3.3 Integration Of!&ij

The kernel in Equation (5.23) may be written as

—i 8 g
K($-¢) = e - gt KPEH@E 64D

2
- ]
4wk2(a2+p )l’/2 ¢

(5.24)

where
9 _ 2
f(u) = a“cos u + p
~1kR
G’u) =e
N R
with
- 5 2
R® = [22 siun %]2 + (pw? & o)
If
21/2
gz 4ﬂk2(a2+p ) ‘£2
iy - -1 ij
then

¢ ¢
© ‘ 8 8 2 1 1. .1
gij = J; d$1, (9 , L& |- a_g gg *K T(-9)| 6(¢-¢)ad
- o

“q’o — (5.25)

The inner integral is separated into two integrals, viz.
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o

1 0 2 1 1 1
I.(9) [- a¢1 575 + kK7L (-9 )] G($-97) d¢

+

-
1 0 0 2 1 1 1
1,4 L— o T (- )] G(P-¢") a¢

(=) hbo_e.

1
In the first integral above the change of variable ¢ = - ¢1 is made and

1 .
in addition use is made of Ij(—¢ ) = Ij(@l) to yield

a—-,,&

$1,(®) f 1.(3h —q)—% [G(eY) - 6(9-4M) ] a¢ (5.26)
0

¢ .
+ r 1J.(¢1) K2[£ (oY) G(PrdT) + £(d-¢Y) G(d-dY)] adt
0

The function of ¢ inside the braces, , is an even function as is the

current Ii(¢). This simplifies Equation (5.26) to

¢
(o] A
3 413. =f a91_($) f I (Y ——ﬂ, [6(4+dY) - (91 ] 14"
‘0 0
4

+ ijwl) KLE(dr0T) G(drdD) + £(¢-¢Y) c(d-9Y)] adtp  (5.27)
0
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The first integral in Equation (5.27) may be integrated by parts twice,

1
once with respect to ¢ and once with respect to ¢ which gives

$
° ar(® ar @h

o
f 55 I [6(4+¢T) - G(¢-¢1)] agad’ (5.28)
0 d¢

0

where use has been made of

0 and

l

Ii(¢0) = IJ.(¢O)

c(dh) - ¢ (-¢H

1
o

If Equation (5.28) is substituted into Equation (5.27) the result is

& I (® a1 () . . .
L= 2 [G($+d7) = G(~¢7)] ddad
J ad d¢l

0 0

(5.29)

¢
o]
+ f LD 1@ K260 64D 42441 6(-¢) Jagag!
0

It will be reiterated that Equation (5.29) holds only when the following

are true:

1) IijIj are even functions and vanish at ¢o

ot
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2) R is linearized, i.e., R(P-0) = R(S*-9),

The integrals in Equation (5.29) are two dimensional integrals and need

to be integrated once analytically to be suitable for numerical computation,
* The reason for this is that the integrands are rapidly varying functions

of the variable of integration and numerical integration requires either

a very small step size or a variable step size technique. Either of thg
two techniques is prohibitive in the amount of machine time required for
two dimensional integrals.

However, one is indeed fortunate that after a change of variable the
integrals may be integrated analytically once. The resulting one
dimensional integrals are then numerically integrated by a variable step
size technique,

Let

u = Gedt
1 (5.30)
v = $-¢
Recall that
d11(¢)
Il(¢) = sinh yl_(¢o—¢) B =Y cosh Yl(¢o—¢)
1
dI_(¢")
1 ) 1 2 1
Iz(¢ ) = sin Bz(¢0—¢ ) —=— = -8 cos Bz(¢o—¢ )

a¢t

If the change of variable in Equation (5.30) is made then

oty = & -u) - cos
Il(¢0 Il(¢ ) = > [cosh Y1(2¢O u) cosh ylv] (5.31)
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1 2
d11(¢) d11(¢ ) Y,

6 d¢1 = [cosh y1(2¢o—u) + cosh Ylv] (5.32)

. 1 i
11(¢) 12(¢ ) =3

[cosh Y3(2¢O-u) cosh Y,v - sinh vy, (2¢0—u) sinh y,v

- cosh y2(2¢5-u) cosh Yav + sinh y2(2¢0—u) sinh \bv] (5.33)

dI ($) d12(¢1) Y, B .
= == [cosh y3(2¢o—u) cosh Y,v - sinh y3(2¢5—u) sinh Y,V

d¢ d¢1
+ cosh y2(2¢o-u) cosh Y,v - sinh y2(2¢o-u) sinh st] (5.34)
1,(® 12(¢1) _ 2 {cos B,V - cos B, (2 -w (5.35)
1 2
d12(¢) d12(¢ ‘ = ?E_ [cos B, (2¢ -u) + cos B v] (5.36)
dé d¢1 - 2 2 o ; 2 '
where

- Yl+iBZ‘




and

Since the assumed currents are exponential in form and, of course,

have the property e(x+y)=exey,

the products of the currents and their

derivatives separate into products of functions of the form U{u) V(v),

where U i3 a function of u alone and V is a function of v alone.

This
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particular property of the currents permits the two dimensional integrals,

Equation (5.29) to be integrated once analytically.

The integrals, Equation (5.29), are now of the form

S
1 §i © 1 1 1
Ld =ff P8 B (44 abeo

0 0

The Jacobian of the transformation given in Equation (5.30) is %

integral in Equation (5.37) may then be written as

1

5 Q(ij = f[ Fl(u) F2(v) dudv
R
uv

where Ruv is shown in Figure 5.2.

The

(5.37)

(5.38)
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Vv
($6.P )
{0,0)
(4)0-,"‘(#0)
Figure 5.2
If the integration with respect to u is to be integrated first, 1.e.,
able to be integrated analytically, Equation (5 38) is written as
d)o F_(v) + F_(-v) ?'q;o_V
1 - 2 2 dv F_(u)du
2 Vi~ 2 1
0 v
(5.39)
On the other hand if the integration with respect to v is to be performed
first, Equation (5.38) is written
1d 1 2 ] 1 o A0
— = — * d dv + = d g
2 Y45 zf Fl(u) u FZ(V) v 2f Fl(u) u F2(v)dv
0 -u ¢o —2¢0+u
(5.40)

y—

[Ee—. ——

-
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If the currents and their derivatives, Equations (5.31) through (5.36),
are substituted into Equations (2.39) and (3.40), and the integrations
first are performed, the results for the integrals, Equation (5ﬁ29),

are obtained after considerable analytical integration. The results are

b
o 2 .2

1 ::.’. [Yl + k“f(u)] {u cosh yl(2¢o—u) -2 (¢O—u) cosh ylu]
0

2 sinh Y,u - sinh yl(2¢o—u)

Ly, 2Kt ] T G(w du
2¢ ‘
© 2 .2
+ [yl +k f(u)](2¢o—u) cosh y1(2¢o—u)
P
o
. sinh vy (2¢ -u)
+ [y Z-sz(u)] L0 G(u) du (5.41)
1 Yl
dDo ‘ 2 sinh y_u
1o = G(u) [lez—l k7f(u) ) -—§;——— cosh [y2(2¢0-u)]
0
sinh [y3(2¢0-u)] - sinh YU
- cosh yzu
Y3
sinh y_u

+ [Y132+i K2 f(u) ] —=— cosh [y3(2 ¢o-u)]

2
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sinh [y2(2¢0—u)] - sinh y,u
Yo

du

- cosh ysu

4>o o sinh Y3(2¢O~u)
+ G(u) [Yle-lk f£(u)] 3

¢O

cosh [y2(2¢0-u)] l(5,42)
3

sinh y2(2¢0-u)
Yz

P I . .
o 2 sin B u - sin B_(2¢ -u)
2 2 - 2 2 o
gz = [B.7 + K'f(w]
22 2 B

+[y1 32 + 1 sz(u)] cosh [y3(2¢o—u)] du

-

+ [Bzz'sz(u)] fu cos 32(2¢0—u) "2 (¢o_u) cos B2u1f G(u) du

Bz 2

2% o 9 sin B (2¢o—u) o o
+ .L: [B2 + kK f(0)] ————— + [B T-Kf(0)] (2¢O-u) cos 32(2¢0—u) G(u)du
o) (5.43)

where

2 _2
f(u) = a~ cos u+ p

- &
G(u) = S R® = [2a sin %}2 + (pu)2 + (5)
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The integrals are now in a form suitable for numerical evaluation and
hence the complex constant A may be found from Equation (5,22) which
is repeated here for convenience after the numerator and denominator on

the right hand side are multiplied by a constant.

IZ(O) 1 Il(O) g{z

A = y
I1(0)ﬂ22 - I2(0)%12

(5.44)

with

Il(O) sinh yl¢

C

and

1}

12(0) sin Bz¢0

5.3.4 Results of the Numerical Infegration

The integrals in Equation (5.44) were evaluated using a variable step
size technique and the value of A was determined for helices with a total

of 8, 12, and 16 turns. All helices have a pitch angle Y =12 6 and a

) J

tape width 6 = .15.
One is interested in how much of the second mode is launched as

compared to the first mode. For this reason the results for A are not

A

given, but the values for laj = EIEH_§I$; are given., The magnitude

of a, la [, approximately equals the ratio of the amplitude of the first
_2Yl¢o

mode. The approximation arises from ignoring the term e as

compared to unity. The approximation is better than 2% on the worst case

and often better than .05%.
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In Figure 5.3 la] is plotted as a function of frequency for the
three different length helices. 1t is to be noted as frequency is
increased the general trend is for an increase in second mode., This
functional variation is identical to what was found for the infinite
helix as shown in Figure 2.1.

The oscillations in the amplitude of a may be caused by the variation
of input impedance of the helix. The minimums of lal occur near values
of k which correspond to values of Brz that make the helix resonant.

The magnitude of the total current on a helix of 12 turns for two
different frequencies is shown in Figures 5.4 and 5.5. At the lower
frequency, k = .17, the attenuation for the first mode was smaller than
at the higher frequency, k = .29. Consequently, the total current does
not decay as fast at the lower frequency. In addition, the amplitude of
the second mode is less at the lower frequency. Therefore, the second
mode doeé not give the pronounced standing wave as at the higher frequency.
Figures 5.6a, 6b, and 6c show that k - B diagram in the region of interest
in this chapter.

5.4 Summary

Two source prcblems were investigated in this chapter, one an infinite
helix and the other a finite helix. Both problems were similar in that the
helices were fed at the origin with sources of small extent, essentially 6 -
sources. In both problems the object was to find the relationship between
the amplitudes of the two predominant modes constituting the current on the
helix. The phase constants determined by solving the determinantal equation
in previous chapters were used in finding the relative amplitudes of the

two modes.

-_-r= '
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Figure 5.3, Relaiive Amplitude of the Two Modes on a Finite
v Helix as a Function of Frequency,
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Figure 5.6b.
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The k -‘Bi diagram fog the tape helix near
Mode 1; ¥ = 12.6°, a = ,335.
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The relotive amplitude of the two modes in the case of the infinite
helix was found by evaluating the contribution made by the leaky wave poles
to the inverse Fourier transform of the source problem. The leaky wave
poles are the solutions to the determinantal equation.

The relative amplitude of the two modes in the case of the finite
helix was found by using a variational formulation to find the relative
amplitude to give the best input impedance in terms of the two current
waves which correspond to Solqtions of the determinantal equation.

It was found that the second mode increased in amplitude as the
frequency was increased for both problems, In addition, when the helix
was truncated, there was an end effect and the oscillations of the
relative amplitude agree well with the expected variations of tlhe input

impedance for the second mode.
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6., COMPARISON WITH EXPERIMENTS

6.1 Marsh's Experiment

6.1.1 Introduction

In 1950 Marshl8 reported that he had measured the current distri-
bution of a six turn helix fed against a ground plane. In addition to
measuring the current he was able to empirically fit the results by
assuming two current modes each of which was reflected from the end.

For the empirical results he chose the current as

-(al+1Bl)z —182z (a1+131)z 132z
I ==¢ + ae + be + ce

The real constants a., B,, and B2 and the complex constants a, b,

l,
and ¢ were chosen by Marsh to fit his measured data. He obtained excellent

agreement.

6.1.2 Phase Constants

The phase constants calculated by solving the determinantal equation

agree well with Marsh's empirically determined phase constants as shown

in TABLE I.
TABLE 1
) *1 By By
k Marsh Calculated Marsh Calculated Marsh Calculated
.1488 .0078 0 .681 .69 1.193 1.15
.1734 .0636 .069 .795 .808 1.173 1.175

.2115 .1548 .1065 .969 .875 1.356 1.212




The calculated phase constants in TABLE I correspond to tape helix
parameters, Y= 12.60, a = 4,305 cm and © = _15a, The empirically deter-
mined phase constants by Marsh correspond to parameters $ o= 12.60 and
a = 4,305 cm, The wire diameter is not reported by Marsh and a tape
width was chosen to be approximately equal to the wire diameter inferred
from a photograph in Marsh's report. For Bl Marsh used BO corresponding

to a wave traveling down the wire with the velocity of light.

6.1.,3 Amplitude Constants

The solution for the helix fed against the ground plane was not
attempted. However, it is interesting to compare the magnitude of the
amplitude coefficients obtained for: 1) The infinite helix fed at origin;
2) the finite helix fed at the origin, and 3) Marsh's empirical results
for the helix fed against a ground plane. The comparison is shown in
Figure 6.1. Note that, as k is increased, one in general expects the
second mode amplitude to increase relative to the first mode amplitude,
Marsh, in empirically determining the amplitude coefficients, did not
insist on zero current for each mode or total at the end of the helix,

He permitted energy propagation down the helix in mode 2 to be

converted into mode 1 to be reflected, This is reasonable since at the
discontinuity the waves are 'relaurched" and mode 1 is easier to excite
than mode 2 as shown by the calculations of Chapter 5. Since only a
portion of the mode 2 current returns this may permit a larger mode 2
current to be launched and hence a larger relative amplitude, a. In
Chapter 5, where source problems were investigated, each mode current was

forced to be zero at the end of the helix.
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Figure 6.1. Relative amplitude of the two modes compared for
a) infinite helix, b) finite helix and ¢) Marsh's
empirical work,
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6.1.4 Summary

Marsh was able to empirically fit the measured current distribution
on a six turn helix fed against a ground plane by assuming two current
waves each reflected at the end, The phase cmnstants calculated in this
report agree well with Marsh's empirically determined phase constants.
In addition the amplitude coefficients calculated in Chapter 5 behave
similarly to Marsht's coefficients.

6.2 Other Experiments

Both McClelland?lon the conical equiangular spiral, and Patto&?
on the bifilar helix fed out of phase, have performed experiments which
support the use of the approximation for the current by only the two
modes. The bifilar helix fed out of phase has a determinantal equation
which is related to the determinantal equation for the monofilar helix
studied in this report, The determinantal equation for the bhifilar
helix has only the terms corresponding to n odd as coefficients to Dn
as compared to the determinantal equation for the monofilar helix, One
expects similar behavior of the solution near Br = 2 but certainly different
solutions near Br = 2 since the terms containing T_2 are missing. The
conical equiangular spiral is the log-periodic version of the bifilar
heli%l Both works, McClellaqd's and Patton's, support the calculations
reported here in the following manner:

1) As the frequency is increased above a value corresponding to

- -

kcl’ the current decays, indicating radiation. The higher k

the more attenuation, indicating Bi increasing as k is increased.
2) As i is increased still further the current has a small

standing wave component occurring indicating that mode 2 is present,



144

The foregoing experimental results are exactly what would be predicted
from the solution of the deteminantal equaiion and the corresponding study

of the source problem,
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7. SUMMARY

7.1 Oraiginal Work Done

Sensiper formulated and solved the determinantal equation for the
tape helix treating the phase coustant, B, as a real variable but
Sensiper and Pierce doubted the existence of complex-valued solutions
for the determinantal equation. This present work reports the solution
of the determinantal equafion for various values of the parameters of
the tape helix, where the phase constant 1s complex~valued., The
determinantal equation was 1interpreted as a complex-valued equaiion where
the arguments of the IK products are shown to be continuous functions
of k and B, 1In determining how the various arguments of the IK products
should be interpreted it was found useful to study two simplified equations
which exhibited solutions, 1in certain regions of Br’ similar in character
to the solutions for the determinantal equation,

Two source problems were investigated, the first an infinite helix,
the second a finite helix, both fed at the origin. The amplitudes of
the free modes represenfing the current on the infinite helix were found
following Sen51per7 but with the phase constant, Bﬁ as a complex
variable. On the problem of a finite helix a variational technigque was
used to find the relative amplitude of the two modes representing the
current which yields the best input impedance for a current approximated
by two modes which correspond to solutions of the determinantal equation.
Tang'30 used the variational technique to find the input impedance of
the helical antenna (finite helix) assuming the current to be the sum of

two components, the first was sinusoidal and corresponded to waves
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traveling at the velocity of light; the second was also sinusoidal but
with the phase constant twice the value corresponding to phase constant
for a wave traveling at the velocity of 1light.

The variational technique was used in the present report to find
the relative amplitude of the two assumed modes.which were used to
represent the current on the finite helix, The phase constants
corresponding to the assumed modes are the complex-valued solutions
to the determinantal equation.

7.2 Conclusions

This report indicates that it is possible to approximate the
current on a helix with current waves whose complex-valued phase constants
are found solving the determinantal equation. The value and the behavior
of the roots as a function of the helix parameters of the determinantal
equation is just that behavior whicit causes the corresponding current
to agree with experimental results,

The sclution of the determinantal equation for a = 10~308,
extremely narrow tape, corresponds to the asymptotic solution obtained
by Mittrall for the limiting case where the tape width tends to zero,
As the tape is made wider but still very narrow, e.g., corresponding to
a = 10~30, the phase constant becomes complex valued and in addition
the real part of the phase constant deviates from the line K = Br sin ¢,
representing a wave traveling down the tape with the velocity of light.
The wider the tape the greater is the value of Biﬁ the imaginary part
of the phase constant., Also the wider the tape the greater is the

deviation of the real part of the phase constant from the line

corresponding to the velocity of light.




147
For the mode 1 solution the imaginary part of the phase constant

o

increases rapidly as the frequency 15 1ncreased above k = ﬂcl

As the pitch angle, ¢, 1s increased the real psrt of the phase
constant tends toward the line corresponding to the velocity of light.
Also as the pitch angle is 1ncreased the maximum value of the aimaginary
part of the phase constant decreases,

The amplitude coefficients calculated 1n connection with the source
problems permit the calculation of the total current on the helix.
Corresponding to a frequency just above kK = icl the current 1s
predominantly mode 1 type current and shows exponential decay away
from the éourceo For a higher value of k the current shows the relative
increase of mode 2 type which 1s typified by a definiie standing wave

of current near the reflected end for the iinite helix.

7.3 Further work

7.3.1 The Bafilar Helax

The determinantal equation has been derived for the bifilar helix when
the currents are assumed balanced. This determinantal equation has only
the terms on the right hand side which have form factors, 1.e., the even
terms are zero. Although simplified Equation (1), Section 3,2, gives an
insight into the behavior of the solution, a more exact solution might be
found. Afier one obtains the roots for the infinite bifilar helix, the
source problem could be investigated with the end results the calculation
of patterns. These could be checked against Patton'slz calculated and

measured results.

7.3.2 A Conducting Cylinder Inside the Helix

Following the method similar to that used in this report, the
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determinantal equation for a concentric conducting cylinder inside
the helix may be obtained. The behavior of the solutions could then
be used to verify the preliminary measurements 12 indicating that
the radius of cylinder has small effect on the fields outside the

helix.
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